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Results are presented from quantum dynamical simulations of vibrationally coherent condensed phase electronic
surface crossing processes that take into account the relative positions of the ground, reactant, and product
excited states. We find that the degree of Franck-Condon activity in the various vibrational modes can have
a significant effect on the surface crossing probability, the nature and magnititude of coherent surface
recrossings, and the nature of vibrational motion in the product state when motion in the reactant well is
underdamped. The results are discussed in the context of recent femtosecond studies of the photodissociation
of the myoglobin-nitric oxide complex and the photoisomerization of the retinal prosthetic group in the
rhodopsin system.

Introduction

The use of femtosecond pump-probe techniques to prepare
and detect coherent vibrational wave packets on excited-state
surfaces has provided new insight into the role of coherent
vibrational dynamics in ultrafast electronically nonadiabatic
processes.1-23 For a dipole-allowed transition, impulsive excita-
tion results in a wave packet localized in the Franck-Condon
region of the upper surface, which subsequently moves out along
the Franck-Condon directions. In condensed phases, dissipa-
tive interactions with other intramolecular and/or solvent
motions lead to a rapid loss of phase coherence among the
nuclear eigenstates that make up the wave packet. If the
dephasing process is complete before the wave packet can travel
from the Franck-Condon region of the upper surface to the
surface crossing region, then the decay of population in the
initially excited state is monotonic and observation of the
electronic state population dynamics provides little direct
information on the nature of the reactive nuclear motion. If
complete thermalization with the environment occurs on a time
scale that is short compared to the reaction, then classical and
semiclassical methods can be used to compute the equilibrium
rate of barrier crossing.24-26 In this case, the decay of electronic
population in the intially excited state is independent of the
nature of the excitation process.

If the dissipative interactions are sufficiently weak that the
nuclear motion in the reactant well is underdamped, the wave
packet may repetitively sample the region where the reactant
and product diabatic surfaces cross. Each visit of the reactant-
state wave packet to the crossing region results in a fraction of
the wave packet being launched on the product surface, giving
rise to the possibility of stepwise decay of the reactant
population. If the nuclear motion in the product well is
underdamped, the wave packet can revisit the surface crossing
region, resulting in electronic recurrences (coherent barrier
recrossings). These processes are illustrated schematically in
Figure 1.

To the extent that the reactant and product states are spectrally
distinct, information on electronic population dynamics can be

obtained by integrating the probe signal over wavelength.
Displacement of the final surface in the probe process along
one or more of the modes that couple to the curve crossing
process leads to a mapping of the time-evolving spatial
probability onto the spectral dynamics. When this is the case,
information on reactant and/or product wave packet motion can
be obtained by frequency resolving the probe signal.

Recent time-resolved experiments have detected vibrationally
coherent products following ultrafast nonadiabatic processes in
a variety of systems. For example, Apkarian and co-workers,6,7

in their studies of I2 photodissociation in solid rare gas matrices,
observed coherent oscillations in the ground state of I2 resulting
from geminate recombination. Wynne et al.13,14 have shown
that coherent vibrational dynamics strongly influence the
excited-state charge-transfer process in the TCNE-pyrene
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Figure 1. One-dimensional electronically nonadiabatic process il-
lustrating the competition between coherent electronic curve crossings,
recrossings, and dissipative dynamics. Labels refer to the diabatic
surfaces.
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complex. Coherent nuclear dynamics accompanying excited-
state processes have also been observed in several chro-
mophore-protein complexes. Zhu et al.11 observed coherent
iron-histidine stretching and heme-doming dynamics in the
ground state of myoglobin following photodissociation of the
myoglobin-NO complex. Mathies, Shank, and co-workers15-18

have shown that the isomerization of 11-cis-retinal in the visual
pigment rhodopsin occurs irreversibly in less than 200 fs, leading
to a trans photoproduct that is formed vibrationally coherent in
a 60-cm-1 skeletal torsion motion. A recent multimode wave
packet analysis of this process by Wexler and Mathies based
on resonance Raman intensities suggests that the wave packet
actually reaches the crossing region in<50 fs.27 These studies
are significant in that they provide clear evidence in each case
of the nature of the nuclear motions that couple to the electronic
process and demonstrate that models based on diffusive nuclear
motion do not adequately describe these nonadiabatic processes.

A proper theoretical description of ultrafast electronically
nonadiabatic processes requires explicitly treating both the
optical preparation step and the ensuing nonstationary vibrational
dynamics. In a series of recent papers, we28-31 and others32-36

have developed multilevel Redfield theory into a powerful tool
for investigating the interplay of electronic and vibrational
coherences and dissipative dynamics in ultrafast electronic
processes. Our simulations of nonadiabatic dynamics in one-
dimensional, three-state model systems have shown that wave
packets launched on the reactant surface can survive nonadia-
batic curve crossing processes, giving rise to vibrationally
coherent products and the possibility of coherent surface
recrossings. Results from these studies have also demonstrated
the importance of non-Bloch (e.g., bath-induced coherence
transfer) processes in electronically nonadiabatic reactions. In
addition, we have used this approach to show how one can use
time- and frequency-resolved fluorescence to disentangle elec-
tronic and nonstationary vibrational dynamics in systems
undergoing ultrafast charge-transfer reactions. Similar studies
have been carried out recently by Bixon and Jortner using a
somewhat different theoretical approach.37

In one-dimensional models, the initial force acting on the
wave packet is necessarily directed along the reactive motion.
In many systems of chemical interest, however, several vibra-
tions strongly couple to both the optical excitation and non-
adiabatic transitions. In such cases, impulsive excitation of two
or more of these modes leads to an evolving multidimensional
wave packet. The initial location of the wave packet on the
upper surface will depend on both the nuclear coordinate
displacements between ground and reactant excited state and
on the spectral and temporal properties of the excitation pulse.
The short-time nuclear dynamics accompanying the electronic
surface crossing process will be governed in large part by the
extent to which the Franck-Condon active modes project onto
the motions that couple to the nonadiabatic process (i.e., reactive
modes). For example, in the rhodopsin system, the reactive
skeletal torsion motion is strongly Franck-Condon active in
the S1 r S0 transition of the 11-cis-retinal prosthetic group due
to the steric repulsion between the 13-methyl group and the
10-hydrogen. Impulsive excitation of this mode thus produces
a vibrational wave packet that experiences a significant force
in the direction of the cis-trans surface crossing region, which
accounts for the ultrafast nature of the isomerization process
and the formation of a vibrationally coherent trans photoproduct.
Multidimensional coherence effects may also play a critical role
in determining the rapid and irreversible nature of the isomer-
ization process in the rhodopsin system by effectively directing

the nascent product wave packet away from the surface crossing
region following the initial passage through this region.

It is interesting to note that the observation of vibrational
coherence in a product mode does not necessarily imply that
motion is prepared coherently in the excitation process. In a
previous paper, we showed that in one-dimensional systems
where the time scale of the electronic tunneling interaction is
shorter than the vibrational period, the nonadiabatic process can
lead to a vibrationally coherent product even when no coherence
exists in the reactant state. This is also evident from recent
experimental studies. For example, in their studies of the
photolysis of the myoglobin-nitric oxide complex, Zhu et al.
found that rapid passage of the system through the surface
crossing region along the dissociative Mb-NO coordinate
produces the ground-state myoglobin vibrationally coherent in
both the iron-histidine and heme-doming motions, even though
the former mode is not displaced on photoexcitation and thus
is not prepared coherently in the pump process.11

The experiments discussed above raise some very general
and important issues regarding the extent to which the electronic
and vibrational dynamics are influenced by the forces acting
on the initially prepared wave packet. Relatively little theoreti-
cal work on multidimensional nonadiabatic dynamics has been
carried out. Jortner and Bixon38 and Sumi and Marcus39 have
shown the combined effects of intramolecular vibrational motion
and diffusive solvent reorientations on the rate of electron-
transfer reactions. More recently, Coalson et al.40 have incor-
porated excitation effects into a nonequilibrium Golden Rule
description of nonadiabatic electron transfer. Cho and Silbey
have presented a generalized expression for the nonequilibrium
rate of photoinduced electron transfer for a two-dimensional
solvation coordinate model, in which the effect of the optical
preparation step is explicitly treated.41 Matro and Cina have
recently calculated the femtosecond fluorescence anisotropy
arising from excitation transfer between strongly coupled
chromophore pairs in which each chrompophore is coupled to
a low-frequency vibration.32 Their results showed that the
dissipative nuclear dynamics has a pronounced effect on the
form of the anisotropy decay. These authors also discussed the
role of intrachromophore vibrational dynamics in determining
the dependence of the time-resolved anisotropy on experimental
factors such as the excitation pulse width and detection window
duration.

In this paper, we treat the situation in which an electronically
nonadiabatic process couples to two underdamped vibrational
degrees of freedom. These may represent, for example, low-
frequency intramolecular modes or specific motions of the
surrounding medium that experience strong coupling to the
system electronic states. Specifically, we present results from
numerical solutions of the multilevel Redfield equations that
examine how the electronic population dynamics and product
vibrational dynamics are influenced by the extent to which the
Franck-Condon active modes project onto the reactive motion.

Theory

Redfield theory provides a framework for computing the
quantum dynamics of a system consisting of a few degrees of
freedom interacting with a thermal bath.42 A detailed formula-
tion of the theory in the context of the electronic curve crossing
problem has been presented previously,28,30 and thus here we
briefly review the basics of this approach. The total Hamiltonian
has the form

H ) HS + HB + HSF + V (1)
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whereHS is the Hamiltonian for the system,HB is the bath
Hamiltonian, andHSF is the interaction between the system
degrees of freedom and the external electromagnetic field.V
is the system-bath interaction, which introduces energy relax-
ation and pure dephasing into the system. Treating this
interaction to second order and assuming that the bath correlation
time, τc, is faster than any system relaxation time leads to the
Redfield equations for elements of reduced density matrix of
the system.

The dissipative dynamics arising from the system-bath coupling
are contained within the Redfield relaxation tensor,R. Elements
of this tensor describe the damping of populations and coher-
ences within the system and have the form

We assume the system-bath interaction has the form

where q and Q denote the bath and system coordinates,
respectively. The constants,fi, are the coupling strengths
between system variableGi and the bath. The terms appearing
in eq 3 then have the form

Assuming the correlation functions have the form〈Fi(τ)Fj(0)〉
) δij e-τ/τc and that the correlation time,τc, is shorter than both
the system relaxation times and the system Bohr periods allows
the Redfield tensor elements to be written as follows.

The solution to eq 2 can be written formally asF(t) ) eLtF(0),
whereL is the Liouville operator. In our previous work, this
set of coupled equations was solved in the system eigenstate
basis via numerical diagonalization ofL. For a system withN
basis states, the Liouville tensor hasN2 elements. The direct
diagonalization algorithm scalesN6 in this case; thus this method
is only feasible for systems containing a few electronic states
coupled to, at most, a single vibrational degree of freedom.

Recently, however, a significant advance in density matrix
propagation was made by Pollard and Friesner,33,34who showed
that when the system-bath coupling has the form of eq 4, the
time-dependent reduced density matrix can be determined
without explicit construction of the full Redfield tensor. Their
method, based on the short-iterative Arnoldi procedure,43,44

generates an approximate propagator at each time step in an
n-dimensional Krylov subspace spanned byn - 1 applications

of the Liouville operator to the density matrix. As shown by
Pollard and Friesner in several numerical applications of this
procedure, the size of the Krylov subspace necessary to converge
the results is typically 10-20, independent of the size of the
vibronic basis.34 The maximum time interval during which the
propagator is used is chosen such that the density matrix
maintains an arbitrarily small projection outside of then-
dimensional Krylov subspace. This procedure allows substantial
savings in memory and time over propagation via direct
diagonalization and standard time-stepping (Runge-Kutta)
algorithms, thus making possible application of Redfield theory
to systems with a large manifold of states.

Pollard and Friesner have pointed out that their formulation
of the Redfield equations, which makes possible application of
the short-iterative Arnoldi propagation scheme, is similar to the
density matrix equation of motion that appears in the axiomatic
semigroup theory of Lindblad, Gorini, and co-workers.45,46

While both treat the system-bath interaction to second order,
the latter theory guarantees that the time-evolving density matrix
remains positive definite, which is not true of the Redfield
equations. At issue is the factorization of the initial density
operator into a product of system and bath operators, which
neglects transient correlations that must be present for times
on the order of the bath correlation time. This has been
discussed by a number of authors.47-50 The neglect of memory
effects limits the number of physical reduced density matrices
that will remain positive definite during evolution. Suarez et
al.50 have shown that slight modification of the initial conditions
is sufficient to ensure positivity during evolution under the
Redfield equations of motion. Practically speaking, deviations
from positivity are limited.

Model and Numerical Implementation

In this paper, we present results from a series of simulations
of electronic surface crossing dynamics in simple two-mode
model systems, taking into account the relative positions of the
ground- and reactant excited-state potential surfaces. The model
is summarized pictorially in Figure 2. The system Hamiltonian
is

where Hg, H1, and H2 are vibrational Hamiltonians for the
ground, reactant, and product diabatic states, respectively.J is
the electronic tunneling interaction between the excited diabatic

F̆(t) ) -i
p

[HS + HSF, F(t)] + RF(t) (2)

RNM,PQ )

ΓQM,NP
+ + ΓQM,NP

- - δQM ∑
S

ΓNS,SP
+ - δNP ∑

S

ΓQS,SM
- (3)

V ) ∑
i

fiFi(q)Gi(Q) (4)

ΓQM,NP
+ )

p-2 ∑
j
∑

j

fifj〈Q|Gi|M〉〈N|Gj|P〉 ∫0

∞
dτ e-iωNPτ〈Fi(τ)Fj(0)〉B

ΓQM,NP
- )

p-2 ∑
i
∑

j

fifj〈Q|Gi|M〉〈N|Gj|P〉 ∫0

∞
dτ e-iωNPτ〈Fi(0)Fj(τ)〉B

(5)

ΓQM,NP
+ ) p-2 ∑

i

fi
2τc (1 + e(âpωNP)-1 〈Q|Gi|M〉〈N|Gj|P〉 (6)

Figure 2. Two-dimensional diabatic surfaces for the reactant (1) and
product (2) states.∆i

(l) is the dimensionless displacement of thelth
surface along theith vibrational coordinate. The approximate position
of the initially excited wave packet for each of the three sets of ground-
state displacements are shown.

HS ) |g〉Hg〈g| + |1〉H1〈1| + |2〉H2〈2| + J{|1〉〈2| + |2〉〈1|}
(7)
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surfaces and is assumed to be independent of the nuclear
coordinates. We choose the system modes to be harmonic and
consider only linear displacements between the surfaces. Taking
the origin of the coordinate system to be the transition state for
the curve crossing process, the ground (g), reactant, and product
excited-statel vibrational Hamiltonians, expressed in dimen-
sionless normal coordinates,Qi, and momenta,Pi, are

whereQi
(l) ) Qi - ∆i

(l) with ∆i
(l) denoting the dimensionless

displacement of thelth surface from the origin along theith
coordinate (see Figure 2). We will denote the displacement
between reactant (|1〉) and product (|2〉) surfaces along theith
vibrational coordinate as∆i

(1,2) () ∆i
(2) - ∆i

(1)) and the
displacement between ground (|g〉) and reactant (|1〉) surfaces
along the ith coordinate as∆i

(g,1) () ∆i
(1) - ∆i

(g)). The
reorganization energy, which is the potential energy difference
between the reactant and product equilibrium positions in the
product well, is thusλ ) 1/2∆1

(1,2)2pω1 + 1/2∆2
(1,2)2pω2. The

Franck-Condon energy for the|g〉 f |1〉 optical transition,
which is the potential energy difference in the reactant well
between ground state and reactant equilibrium positions, isEFC

) 1/2∆1
(g,1)2pω1 + 1/2∆2

(g,1)2pω2. εl is the vertical energy
separation between the ground-state andlth excited-state surface
(εg ) 0.0), so the electronic origin for|g〉 f |1〉 occurs at an
energy ofE ) εl - EFC.

The coupling between the diabatic vibronic states and the
thermal bath is obtained by assuming the interaction is diagonal
in the electronic index and expanding the interaction about the
minimum of each diabatic surface to second order in the system
coordinates.28 Furthermore, we assume perfect correlation
among the bath motions interacting with each system mode in
each diabatic state. In the diabatic representation, the coupling
Hamiltonian has the form

wherem is the vibrational mode index. The terms linear inQ
give rise to one-quantum vibrational relaxation. The quadratic
terms give rise to two-quantum relaxation processes and pure
dephasing. F(t) represents the fluctuating force of the bath
modes.

We assume only excited state|1〉 is optically accessible from
the ground state; hence the system-field interaction is given by

with µ denoting the transition dipole matrix element for the|g〉
f |1〉 transition andE0, ω, and τ denoting the electric field
amplitude, center frequency, and pulse width of the excitation
pulse. The initial excited state in our simulations is obtained
by starting with a thermal density matrix for the ground state
and solving eq 2 to second order inHSF, neglecting the effects
of dissipation during the pulse.

While the diabatic states provide a convenient basis in which
to formulate the surface crossing problem, solution of the
Redfield equations is carried out in the representation of
eigenstates of the system Hamiltonian.28 The ground electronic
state enters into our problem only during the optical preparation
step, thus following the initial preparation step, we carry out
the subsequent dynamics in the basis of eigenstates ofHex, where

Hex ) |1〉H1〈1| + |2〉H2〈2| + J{|1〉〈2| + |2〉〈1|}. The eigenstates
can be written as|N〉 ) Σl;i,jCl;i,j

(N)|l;i,j〉 where l ) 1 or 2 andi
and j refer to vibrational quantum numbers.Cl,i,j

(N) is the
projection of eigenstate|N〉 onto the diabatic vibronic state|l;i,j 〉.
The size of the vibronic basis set depends on the normal mode
displacements, temperature, etc. Time-dependent populations
of the reactant diabatic state,P(1)(t), are calculated by transform-
ing the density matrix in the eigenstate representation back to
the diabatic representation and tracing over only those states
that belong to the reactant manifold. The average values of
the nuclear coordinates for population in excited statel are
calculated from the appropriate diabatic density matrix,p(t)

(l), by

For the results presented here, typically 18-20 basis states
per mode per excited state (i.e., 648-800 states total) were used
to calculate the system eigenstates. The short-iterative Arnoldi
propagation routine was used with a 25-dimensional Krylov
subspace. The length of each time step was restricted by placing
a maximum projection of the final density matrix outside of
the Krylov space of 10-8. The number of basis states, the cutoff
parameter, and the size of the Krylov subspace were varied in
order to ensure convergence of the results.

Results and Discussion

In this section, we present results from simulations that
examine how the initial position of and force acting on the
reactant wave packet influence the subsequent curve crossing
dynamics in a two-mode double well. As noted earlier, this
depends on both the excited-state displacements and the spectral
and temporal properties of the excitation pulse. In this paper,
we focus solely on the effect of varying the displacements
between the ground and reactant and product excited-state
surfaces. A thorough discussion of the dependence of excited-
state dynamics on excitation pulse frequency has been presented
by Matro and Cina.32

The normal mode displacements between the ground and
reactant and product excited states were chosen in such a way
that the total Franck-Condon and reorganization energies for
the different calculations were held constant. This allowed
variation of the location of the Franck-Condon region, while
keeping the amount of excess vibrational energy deposited in
the pump process and barrier height between the wells constant.
Unless stated otherwise, we take the energy bias between the
wells to be zero (i.e., symmetric double well). The initial
position and initial force acting on the wave packet is governed
by the displacements,∆i

(g,1), between the ground and excited
reactant surfaces. For∆i

(g,1) ) 0, impulsive excitation results
in a spatial probability distribution for that mode that is thermal.
With increasing displacement, the number of Franck-Condon
transitions accessible from a given ground-state level increases,
with the result that the initial wave packet becomes increasingly
displaced (relative to the excited-state minimum) along the ith

coordinate.
The two vibrational modes are chosen to have frequencies

of 80 and 200 cm-1, which have periods of 417 and 167 fs,
respectively. The center frequency of the excitation pulse was
held fixed at 500 cm-1 above the electronic origin. The
temporal width of the pulse (10 fs) corresponds to a coherent
bandwidth sufficient to span approximately 5-10 levels of each
mode. The thermal energy,kT, is 200 cm-1 (T ) 288 K) and
the system-bath coupling terms, fi

2τc and gi
2τc, for each mode

Hl ) εl + 1
2
{P1

2 + Q1
(l)2

}pω1 + 1
2
{P2

2 + Q2
(l)2

}pω2

(l ) g, 1, 2) (8)

V ) ∑
l)1,2

|l〉[ ∑
m)1,2

fm
(l) Qm

(l) + gm
(l) Qm

(l)2]〈l|‚F(t) (9)

HSF ) -µ{|g〉〈1| + |1〉〈g|}‚E0 cos(ωt) e-t2/τ2
(10)

〈Qm
(l)(t)〉 ) Tr{p(t)

(l) Qm
(l)} (11)
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were chosen such that the population relaxation and pure
dephasing times for the 1f 0 vibrational transition in each
diabatic state were 2.60 and 5.30 ps, respectively.

Our model is similar to that employed by Matro and Cina in
their application of Redfield theory to electronic energy transfer
in a model for a strongly coupled photosynthetic dimer;32

however, there are some important differences that merit
mention. Matro and Cina assumed the ground state to be fixed
at the positionQ1 ) 0.0, Q2 ) 0.0 with the positions of the
excited-state minima symmetrically displaced from the origin.
Additionally, they allowed optical access to one or both
monomer excited states and investigated the effects of transition
dipole orientation and the noninstantaneous nature of the pump
and detection events on the time-resolved emission anisotropy.
In this paper, we focus on the effects of varying the relative
displacements of the three states for a given excitation center
frequency and temporal duration on the electronic population
and vibrational dynamics directly.

Simulations were carried out for both strong and weak
electronic coupling for two different reaction coordinates, which
vary in the extent to which the two modes couple to the curve
crossing process. The first set of results we discuss pertain to
a model in which∆1

(1,2) ) 4.24 and∆2
(1,2) ) 0.0, so that only

the lower frequency motion is reactive. The reorganization
energy is 720 cm-1. The tunneling splitting of the surfaces (2J)
is 50 cm-1, so that the barrier height is 155 cm-1, which is
slightly less thankT. The time-dependent nonequilibrium
population of the initial state is shown in Figure 3a for three
different sets of reactant excited-state displacements:

(i) ∆1
(g,1) ) 3.16; ∆2

(g,1) ) 0.00 (only the 80 cm-1 mode is
Franck-Condon active), (ii)∆1

(g,1) ) 2.10;∆2
(g,1) ) 1.50 (both

modes are Franck-Condon active), and (iii)∆1
(g,1) ) 0.0; ∆2

(g,1)

) 2.00 (only the 200 cm-1 mode is Franck-Condon active).
In each case the Franck-Condon energy is 400 cm-1, thus the
average energy of the initially prepared wave packet is∼kT
above the barrier.

For the two excitation cases where the reactive mode is also
Franck-Condon active, the wave packet is prepared such that
a substantial component of the initial force it experiences is
directed toward the crossing region. The dephasing rates are
such that the nuclear motion in the reactant well is underdamped,
as can be seen in Figure 3b, which shows the average values of
the two system coordinates for case (ii), where both modes are
prepared coherently.

The decay of the nonequilibrium population of the reactant
state for these two cases occurs on similar time scales.
However, in the case where only the reactive motion is
coherently excited, periodic sampling of the crossing region by
the localized wave packet occurs, which gives rise to stepwise
decay of the reactant population (“quantum plateaus”). Stepwise
decay has been observed in the experiments of Scherer et al.4

on the solvent-induced predissociation of I2 and in calculations
on the same system by Ben-Nun et al.5 In that system, two
dissociation events per vibrational period were observed, one
each on the outgoing and incoming trajectories. In the example
shown here, we observe only one plateau per period due to the
fact that the fraction of the wave packet that remains on the
reactant surface following passage through the crossing region
has insufficient energy to move completely out of the crossing
region. The proximity of the surface crossing and classical
turning point causes the outgoing and incoming plateaus to blend
together. Dephasing interactions with the bath tend to wash
out the stepwise effect as can be seen from the long time
behavior of the decay. The observed step depth and periodicity

(417 fs) of the population drop-offs provides a direct measure
of both the single passage surface crossing probability and the
frequency of the reactive motion. The presence of a second
coherently prepared mode with a different vibrational period
has the effect of further obscuring the quantum plateaus, even
though the motion of the wave packet on the reactant surface
is still underdamped in both modes for several picoseconds.
When only the nonreactive (200 cm-1) mode is Franck-Condon
active, the force acting on the wave packet is perpendicular to
the reaction coordinate. In this case, a markedly slower rate of
reaction is observed and the decay of the reactant-state popula-
tion is monotonic.

It is interesting to examine the nature of nuclear motion in
the product well in the case where the electronic coupling is
sufficiently weak that only a small fraction of the reactant
population decays on each visit to the crossing region. Figure
3c shows the average value of the reaction coordinate for that
fraction of the population that is in the product electronic state
(i.e., 〈Q1

(2)(t)〉) for the three excitation conditions. For the two
cases where the reaction coordinate is prepared coherently, the

Figure 3. Effect of ground-state position on photoinduced curve
crossing dynamics in a two-mode symmetric double well with∆1

(1,2) )
4.24, ∆2

(1,2) ) 0.0, andJ ) 25 cm-1. (s) ∆1
(g,1) ) 3.16, ∆2

(g,1) ) 0.0;
(- - -) ∆1

(g,1) ) 2.10,∆2
(g,1) ) 1.50; (‚‚‚) ∆1

(g,1) ) 0.0, ∆2
(g,1) ) 2.00. (a)

Nonequilibrium reactant-state population. (b) Average values of the
vibrational coordinatesQ1(t) andQ2(t) in the reactant state for excitation
case (ii). (c) Average value of the coordinateQ1(t) in the product state
for the three excitation conditions.
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product at early times is formed in a stepwise manner, i.e., a
new wave packet is launched on the product surface every 417
fs. Each new wave packet has a well-defined phase relationship
with the previously launched wave packet. The resulting
amplitude interference between these wave packets explains the
simple periodicity seen in the average value ofQ1. In a model
where the vibrational frequencies of the reactant and product
wells differed, the lack of constructive interference between
wave packets launched at different times would lead to a
considerably more complicated behavior for〈Q1

(2)(t)〉.
It is useful at this point to note that the time-dependent

average displacement of theith system coordinate in thelth
diabatic state, as defined by eq 11, depends on both the
magnitudes of the vibrational coherences (off-diagonal elements
of p(l)) and the total population in thelth diabatic state (Tr p(l)).
The dynamics displayed by〈Q(l)

i(t)〉 thus are damped not only
by vibrational energy transfer to the bath and bath-induced pure
dephasing, but also population flow between the reactant and
product diabatic wells. To illustrate how population transfer
between wells influences the long time values of the coordinates,
consider the particular case shown above in Figure 3. Recall
that the two wells are displaced symmetrically about the origin.
The equilibrium position of the reactant excited state is atQ1

) -2.12, Q2 ) 0.0 (i.e., (-2.12, 0.0)). For excitation case
(ii), the ground-state displacement parameters (∆i

(g,1)) cor-
respond to a position of (-4.22,-1.50) for the Franck-Condon
region. In the absence of population flow between wells, the
trace of the diabatic density matrix of the initially excited state
remains constant (i.e., Trp(l) ) 1) and the average position at
long times would correspond to the equilibrium position (-2.12,
0.0). In the presence of population transfer between wells, the
equilibrium population in the reactant well is 0.5 and the long
time values for the coordinates are (-1.06, 0.0), as can be seen
from eq 11 and the definition ofQ1

(1). Thus in Figure 3b the
value of 〈Q1

(1)(t)〉, for example, ranges from-4.28 to-1.06.
Likewise, 〈Q1

(2)(t)〉 (Figure 3c) ranges from 0.0 att ) 0 to
+1.06 att ) ∞.

The effect of the location of the Franck-Condon region on
the electronic population dynamics in this model is even more
pronounced when the electronic coupling is made stronger.
Figure 4a shows the decay of the reactant population for the
same three excitation conditions and system-bath coupling
parameters used previously; however, this time the tunneling
splitting is 160 cm-1. Again we see that coherent preparation
of the reactive mode leads to significant enhancement of the
decay rate compared to the case where this mode is prepared
thermally. In these cases, the vast majority of the nonequilib-
rium population becomes product during the first traversal of
the crossing region.

In the stronger electronic coupling case, oscillations are
observed in the population dynamics at approximately 0.6 and
1.1 ps when the reaction coordinate is coherently excited. These
features result from coherent vibrational motion that survives
the curve crossing process, giving rise to underdamped wave
packet motion on the product surface. The product well
dynamics are shown in Figures 4b and 4c. Since the dephasing
time in the product well is longer than the vibrational period,
the wave packet can revisit the crossing region leading to
coherent recrossings of the barrier. Note that for the case where
only the 200-cm-1 vibration is coherently prepared, the coherent
motion of this mode seen in the product well does not lead to
coherent recrossings since the momentum is directed perpen-
dicular to the crossing region.

It is interesting to compare the dynamics of the higher
frequency (nonreactive) mode in the product state for the two
cases where this mode is prepared coherently (Figure 4c). The
magnitude of the coherence seen in the product state is
substantially greater when the lower frequency mode is also
coherently excited. The reason for this is that coherent
preparation of the reaction coordinate leads to much faster
population transfer between wells, thus preserving some local-
ization of the wave packet along the orthogonal direction.

In the previous set of examples, the lower frequency mode
corresponded to the reaction coordinate and the higher frequency
motion served as a spectator mode. The next set of results we
discuss pertains to a system where both vibrational modes couple
to the curve crossing process. We choose the displacements
between the reactant and product surfaces to be∆1

(1,2) ) 3.00;
∆2

(1,2) ) 1.90, which, as in the previous scenario, yields a
reorganization energy ofλ ) 720 cm-1. We consider only the
stronger electronic coupling case, i.e., 2J ) 160 cm-1. The
population dynamics for the three excitation conditions are
shown in Figure 5. Here, each excitation condition generates
a wave packet on the upper surface that experiences a significant

Figure 4. Effect of ground-state position on photoinduced curve
crossing dynamics in a two-mode symmetric double well with∆1

(1,2) )
4.24, ∆2

(1,2) ) 0.0, andJ ) 80 cm-1. (s) ∆1
(g,1) ) 3.16, ∆2

(g,1) ) 0.0;
(- - -) ∆1

(g,1) ) 2.10,∆2
(g,1) ) 1.50; (‚‚‚) ∆1

(g,1) ) 0.0, ∆2
(g,1) ) 2.00. (a)

Nonequilibrium reactant-state population. (b) Average values of the
vibrational coordinateQ1(t) in the product state. (c) Average values of
the coordinateQ2(t) in the product state.
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force directed toward the crossing region. In each case,>90%
of the nonequilibrium population has decayed within∼250 fs;
however, both the short time and long time dynamics show some
dependence on the initial position of the wave packet. The short
time (<300 fs; see inset of Figure 5) behavior clearly shows
that the fraction of reactant population that becomes product
on the first passage through the crossing region depends
sensitively on the geometry of the approach of the wave packet
to the crossing region. For example, for the cases where the
more strongly displaced 80-cm-1 mode is prepared coherently,
virtually all of the nonequilibrium population is lost in ap-
proximately half of the vibrational period (210 fs).

For the case where the only the 200-cm-1 mode is prepared
coherently, we again see stepwise decay of the reactant
population with only half of the nonequilibrium population lost
during the first passage through the crossing region.

The magnitude and frequency of the coherent recrossings also
depend on the force acting on the initial wave packet. For the
two cases in which the lower frequency mode is prepared
coherently, a sharp recurrence in the population dynamics occurs
at approximately 550 fs (∼1.5 vibrational periods). In the case
where only the higher frequency mode is coherently excited,
the decay shows a considerably broader recurrence at∼750 fs.
The differences in the nature of the recurrences can be
understood by examining the product well vibrational dynamics
shown in Figure 6. Regardless of whether one or both modes
are coherently excited, passage of the wave packet through the
crossing region occurs rapidly enough to produce a wave packet
that is localized to some extent along both coordinates in the
product well. Thus, in each case, we see some coherent motion
in both vibrational modes in the product state. Consider the
two cases in which the 80-cm-1 mode is coherently prepared.
For a coherent barrier recrossing to occur, both vibrations must
arrive back at the crossing region at the same time. Whether
or not this occurs depends on the phase relation between the
two vibrations. For example, it is seen in Figure 6a that for
the case where only the 80-cm-1 vibration is Franck-Condon
active the phase relation between the two product vibrations is
such that each is approaching the crossing region at∼0.55 ps,
resulting in a favorable momentum for crossing back to the
reactant well. In the case where both vibrations are Franck-

Condon active (Figure 6b), the wave packet traverses the
crossing region along a different trajectory than before, with
the result that the phase relation between the two modes is no
longer such that both motions arrive back at the crossing region
at the same time. This has the effect of diminishing the flow
of population back to the reactant well as compared to the
previous case. The situation appears to be somewhat more
complicated in the case where only the 200-cm-1 mode is
prepared coherently (Figure 6c). Here, the fraction of the wave
packet launched on the product surface is considerably reduced
compared to the other cases, and the reactant wave packet
samples the crossing region more often in the first few hundred
femtoseconds. This results in two partially localized wave
packets appearing on the product surface during the first 250-
300 fs. The resulting amplitude interference between these two
wave packets in the product well accounts for the smearing out
of the recurrence seen in the population dynamics.

It is interesting to note that in the case where only the lower
frequency mode is coherently excited, rapid passage through
the crossing region produces a product that is coherently excited
in the 200-cm-1 mode (Figure 6a, dashed line). This is
reminiscent of the situation in the photodissociation of the Mb-

Figure 5. Effect of ground-state position on nonequilibrium reactant
population dynamics in a two-mode symmetric double well with∆1

(1,2)

) 3.00,∆2
(1,2) ) 1.90, andJ ) 80 cm-1. (s) ∆1

(g,1) ) 3.16,∆2
(g,1) ) 0.0;

(- - -) ∆1
(g,1) ) 2.10,∆2

(g,1) ) 1.50; (‚‚‚) ∆1
(g,1) ) 0.0,∆2

(g,1) ) 2.00. Inset:
short time population dynamics showing the first passage through the
crossing region and first recurrence.

Figure 6. Effect of ground-state position on product vibrational
dynamics for the two-mode system of Figure 4. (s) 〈Q1

(2)(t)〉; (- - -)
〈Q2

(2)(t)〉. (a) ∆1
(g,1) ) 3.16,∆2

(g,1) ) 0.0; (b)∆1
(g,1) ) 2.10,∆2

(g,1) ) 1.50;
(c) ∆1

(g,1) ) 0.0, ∆2
(g,1) ) 2.00. The vertical dashed lines in (a) and (b)

denote the time of the first sharp electronic recurrence seen in the
electronic population dynamics.
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NO complex studied by Champion and co-workers,11 where the
myoglobin ground state was produced vibrationally coherent
in the iron-histidine stretching motion even though this mode
is not Franck-Condon active in the absorption process. As
noted above, a significant electronic recurrence is seen in the
simulation in this case at 550 fs, which results from the in-
phase arrival of the product vibrations to the surface crossing
region. No such recurrence is seen in the Mb-NO data since
the reactive motion occurs along a dissociative coordinate.
Nevertheless, it is significant that we observe coherent motion
in a vibrational mode of the product arising from the ultrafast
nonadiabatic process.

Next, we examine the effect on the reaction dynamics of
introducing an energy bias between the reactant and product
wells. We choose the same system discussed in the previous
paragraph, except with an energy bias of 700 cm-1, which puts
the system near the Marcus inverted region. In this case, the
wave packet appears on the product surface with several hundred
wavenumbers of excess vibrational energy. Figure 7a shows
the electronic population dynamics for the cases where only
the higher or the lower frequency mode is Franck-Condon

active (i.e., excitation conditions (i) and (iii)). The two decays
are virtually indistinguishable, and no recurrences are seen in
the population dynamics. This is due to rapid energy relaxation
in the product well (it is easily shown that the one-quantum
energy relaxation rates within a diabatic state scale as the
vibrational quantum number51). This effectively traps the
system in the product well, preventing any electronic recur-
rences. The product vibrational dynamics for these cases are
shown in Figures 7b and 7c. Note that despite the rapid loss
of excess vibrational energy in the product well to the bath, the
vibrations continue to oscillate for several periods. This
behavior arises from coherence transfer processes, which have
been shown to lead to damping times for vibrational modes that
exceed energy relaxation times.30,31

Finally, we discuss the relevance of some of the ideas
presented here to the detailed studies of the primary photo-
chemical process occurring in the rhodopsin system.15-18,27This
work, in particular, shows how the preparation and detection
of coherent vibrational wave packets can be used to gain detailed
insight into reactive trajectories. In these experiments, the trans
photoproduct was found to form irreversibly in<200 fs
following excitation. Furthermore, the product was found to
be produced vibrationally coherent in a 60-cm-1 mode assigned
to the reactive skeletal torsion. The damping time of the torsion
in the product state was found to be∼2 ps. As mentioned
earlier, this mode is strongly Franck-Condon active in the 11-
cis-retinal chromophore due to the steric interaction between
the 13-methyl group and 10-hydrogen atom. Thus, femtosecond
excitation results in a wave packet localized along the torsional
direction, which rapidly directs the system out of the Franck-
Condon region and through the crossing region in the absence
of phase-destroying collisions. Interestingly, these authors find
that the photoisomerization process in 13-demethylrhodopsin,
which is missing the nonbonded interaction with the 10-
hydrogen, occurs a factor of>2 more slowly, leading them to
conclude that the large displacement along the reaction coor-
dinate between the ground and excited surfaces of the 11-cis
pigment accounts for the rapid rate and high quantum yield for
isomerization in rhodopsin.18 This conclusion is supported by
the simulation results discussed above, which show that strong
Franck-Condon activity in a mode with a large projection onto
the reaction coordinate leads to an acceleration of the curve
crossing process and coherent vibrational dynamics in the
product state.

A second interesting aspect of the rhodopsin experiments is
the lack of observation of electronic recurrences in the popula-
tion dynamics, even though the trans product continues to vibrate
coherently for∼2 ps. In a previous paper,31 we reported
simulation results from a simple one-mode model for the
isomerization process in rhodopsin, which showed that the
absence of electronic recurrences could be explained by efficient
coherence transfer processes, which allowed fast energy relax-
ation, thus trapping the wave packet in the product well, without
complete destruction of vibrational phase coherence. Alterna-
tively, multimode mode effects may play an important role in
explaining the lack of electronic recurrences. The resonance
Raman spectrum of the 11-cis isomer shows strong Franck-
Condon displacements in several low-frequency modes.52 A
multimode analysis of the resonance Raman intensities, as well
as the excited-state dynamic absorption and emission spectra,
shows that the majority of the Franck-Condon energy arises
from displacements in intramolecular modes.27 The 30-fs pump
pulse used by Mathies et al. in their photoisomerization
experiments is sufficient to coherently excite several of these

Figure 7. Effect of ground-state position on nonequilibrium reactant
population dynamics in a two-mode biased double well with∆1

(1,2) )
3.00,∆2

(1,2) ) 1.90,J ) 80 cm-1, andε ) 700 cm-1. (s) ∆1
(g,1) ) 3.16,

∆2
(g,1) ) 0.0; (- - -) ∆1

(g,1) ) 0.0, ∆2
(g,1) ) 2.00. (a) Nonequilibrium

reactant state population. (b) Average values of the vibrational
coordinateQ1(t) in the product state. (c) Average values of the
coordinateQ2(t) in the product state.
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motions. The extent to which coherent motion in modes other
than the skeletal torsion persists through the curve crossing
process is unclear. Results from our two-mode model systems
show that the product of an ultrafast curve crossing process can
be produced vibrationally coherent regardless of whether the
vibration is coupled to the electronic process. The observation
of a single coherent mode in the trans product may result from
either rapid damping of the other motions prior to passage
through the crossing region or from a lack of Franck-Condon
activity of these motions in the probe process, in which case
coherent vibrational motion would not influence the time-
resolved spectrum. If the trans photoproduct is produced
vibrationally coherent in more than one mode, then the time it
takes the wave packet to revisit the crossing region may be
longer than the 2-ps dephasing time. This latter scenario does
not rely on ultrafast energy relaxation of the trans product.

Conclusions

The results from this study clearly show that the competition
between coherent vibrational motion and energy and phase
relaxation in ultrafast photoinduced electronically nonadiabatic
processes leads to electronic and nuclear dynamics that depend
sensitively on the location of and force acting on the initially
prepared wave packet. In the case of a symmetric double well,
for given values of the Franck-Condon and reorganization
energies, the electronic population dynamics, as well as the
product vibrational dynamics, were found to depend on the
extent to which the Franck-Condon active modes couple to
the nonadiabatic process.

For weak electronic coupling, where barrier recrossings are
unimportant, coherent motion along modes with significant
projections onto the reactive motion leads to repetitive sampling
of the crossing region and stepwise decay of the reactant. As
the number of underdamped Franck-Condon active modes
increases, this effect washes out, with the result that the decay
of the nonequilibrium population in the initially excited state
becomes monotonic. For the strong electronic coupling case,
where a substantial fraction of the nonequilibrium reactant
population becomes product on a single passage through the
crossing region, it was found that the dynamics of the initial
surface crossing and the magnitude and frequency of coherent
recrossings arising from underdamped vibrational motion in the
product well depend sensitively on the properties of the intial
wave packet.

We note that the model employed here contained only linear
displacements between ground- and exctited-state minima.
Extension of the model to incorporate quadratic Franck-Condon
interactions (frequency shifts, mode mixing) and anharmonic
couplings between vibrational modes presents no difficulty. It
would be interesting to investigate the effects of anharmonic
interactions between the coordinates since these would allow
for rapid mode-mode energy exchange. Such processes may
have profound influences on the nature of nonadiabatic reactions
in which more than one coordinate couples to the electronic
transition. In addition, extension of our method to systems with
more than two modes and/or more than two electronic states is
feasible, given the computational efficiency of the short-iterative
Arnoldi propagation scheme of Pollard and Friesner.
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